

Anterior lobe hormone	Hypothalamic hormone (stimulatory)	Hypothalamic hormone (inhibitory)
тен	TRH	
ACTH	CRH	
GH	GHRH somatocrinin	GHRIH somatostatin
FSH	GnRH	
LH	GnRH	
Prolactin	PRH	PRIH dopamine
MSH	MSHRH	MSH-RIH

Title goes here

MUSCULOSKELETAL SIGNS

- ◆ Proportionate dwarfs
- ♦ Stunted growth
- ♦ Delayed closure of growth plates

Littermates at 6 weeks of age

MUSCULOSKELETAL SIGNS

- Delayed dental eruption
- ◆ Prognathism

MUSCULOSKELETAL SIGNS ♦ Immature facial features ◆ Square chunky contour (adult) SD 18

DERMATOLOGICAL SIGNS

◆ Retention of puppy

• soft, woolly hair

coat

coat

GSD 1 year M

DERMATOLOGICAL SIGNS

- ◆ Alopecia
 - bilaterally symmetrical
 - trunk, neck and proximal extremities

GSD 18 months F

DERMATOLOGICAL SIGNS ◆ Hyperpigmentation of the skin ♦ Comedomes

GSD 2 years F

CONGENITAL PANHYPOPITUITARISM IN CATS

Siamese 6 months M

DSH 8 months M

OTHER SIGNS

- ◆ Reproductive signs
 - Testicular atrophy
 - Failure to cycle or abnormal cycles
- ◆ Mental dullness, aggression
- ◆ Shrill, puppy-like bark
- ◆ Clinical signs of 2° hypothyroidism
- ◆ Clinical signs of 2° hypoadrenocorticism

ENDOCRINE TESTING

- ◆ Basal growth hormone (GH) concentration
- ◆ Clonidine/xylazine stimulation
- ◆ Insulin-like growth factor 1 (IGF1)
- ◆ Thyroid function tests
- ◆ Adrenal function tests
- ♦ Gonadal function tests

GROWTH HORMONE STIMULATION TEST

- Collect blood into EDTA, centrifuge and store frozen until assayed
- Inject IV either clonidine (Catapres[®]) 10 μg/kg (max. 300 μg) or xylazine (Rompun[®]) 100 μg/kg
- Collect second sample into EDTA after 20 min and centrifuge and store frozen

GSD 8 months

GSD 30 months

AETIOLOGY OF ACROMEGALY

- Progesterone-induced acromegaly most common cause in bitches
- Progestogen-induced acromegaly in bitches or dogs
- Pituitary neoplasia in cats
- ◆ Hypothalamic neoplasia

◆ Neoplasia-induced

CLINICAL SIGNS OF CANINE ACROMEGALY

- ♦ Older intact bitches
- ◆ Polyuria/polydipsia
- ♦ Polyphagia
- ♦ Hepatomegaly

CLINICAL SIGNS OF CANINE ACROMEGALY

- Inspiratory stridor, panting, exercise intolerance
- Enlargement of the head, abdomen, limbs and paws

GSD treated with a progestogen

DSH 14 years Mn

LABORATORY FINDINGS IN ACROMEGALY

- Hyperglycaemia/glycosuria
- ◆ Insulin resistance (> 2 iu/kg per injection)
- ◆ Increased liver enzymes (ALP, ALT, AST)
- ◆ Hyperphosphataemia
- Increased growth hormone concentrations
- ◆ Increased IGF1 concentrations

TREATMENT OF ACROMEGALY

 Withdrawal of progestogens and/or ovariohysterectomy in the bitch

 Pituitary irradiation with megavoltage radiation using a linear accelerator or cobalt-60 source

DIABETES INSIPIDUS

- ◆ Central diabetes insipidus
 - Partial or total failure to synthesis or release vasopressin (ADH)
 - Cause: neoplasia, trauma, inflammation, idiopathic
- Nephrogenic diabetes insipidus
 - Partial or total failure of the kidneys to respond to vasopressin (ADH)
 - Cause: renal medullary fibrosis, tubular necrosis, nephrocalcinosis, idiopathic

PRIMARY (PSYCHOGENIC) POLYDIPSIA

- Functional lack of vasopressin due to overhydration
- Reduced renal concentrating power due to decreased medullary hypertonicity (medullary washing out effect)

CLINICAL SIGNS OF DIABETES INSIPIDUS

- Severe polyuria often nocturia and/or urinary incontinence
- Severe polydipsia search for water,
 > 200 ml/kg/day
- Secondary features dehydration, anorexia, weight loss, CNS signs

LABORATORY FINDINGS IN DIABETES INSIPIDUS

- Urinary specific gravity is LOW
 1.001 1.005
- Urine osmolality is low
 50 200 mOsm/kg
- Plasma osmolality is high
 normal 275 300 mOsm/kg
- \blacklozenge Water deprivation test
- ♦ ADH response test

WATER DEPRIVATION TEST

- Patient requires careful monitoring
 - Do not perform if renal function is compromised
 - Stop if patient loses > 5% body weight
- Collect urine (and plasma if measuring osmolality)
 Weigh patient
 - Withdraw food and water
- Collect urine (and plasma) after 6 to 8 hours and then at 2 hourly intervals
- ◆ Stop if patient concentrates urine > 1.020 or loses if it loses 5% body weight

WATER DEPRIVATION TEST

DIFFERENTIATION OF DIABETES INSIPIDUS AND PRIMARY POLYDIPSIA

Parameter	Before water deprivation		After water deprivation	
	DI and PP	CDI	NDI	PP
Unine				
U vol ml/24h/kg	>50	>50	>50	>50
U SG	<1.010	<1.010	<1.010	<1.025
U Osm	<300	<300	<300	<700

DIFFERENTIATION OF DIABETES INSIPIDUS AND PRIMARY POLYDIPSIA

Parameter	Before water deprivation		After water deprivation	
	DI and PP	CDI	NDI	PP
Plasma				
P Osm	290-310	>310	>310	±310
U:P Osm	<1.0	≪1.0	≪1.0	2-3
ADH response	≪1.0	≥1.0	≪1.0	≥1.0

TREATMENT OF DIABETES INSIPIDUS

- Desmopressin (DDAVP)
 - injection, nasal drops, tablets
- Thiazide diuretics
 - Hydrochlorothiazide or bendroflumethiazide
 - Paradoxical effect due to natriuretic action reducing ECF and therefore GFR
 - Urine volume reduced by up to 50%
 - Urine SG unchanged

TREATMENT OF DIABETES INSIPIDUS

- ◆ Chlorpropamide
- ◆ Carbamazepine
- Non-steroidal anti-inflammatory drugs
- No therapy

CLINICAL SIGNS OF PITUITARY NEOPLASIA

- ♦ Head tilt, circling
- ♦ Seizures
- ◆ Functional tumours
- ◆ Non-functional tumours may damage

the rest of the pituitary ◆ Polydipsia, adipsia

CLINICAL SIGNS OF PITUITARY NEOPLASIA

Papilloedema

Pseudopapilloedema

DIAGNOSTIC IMAGING Contrast radiography

Cavernous sinus

Normal cavernous sinus venogram

DIAGNOSTIC IMAGING Contrast radiography

Cavernous sinus venography

Normal cavernous sinus venogram

