Culture Conditions suitable for *in vitro* Seed Germination and Development of Seedlings in *Paphiopedilum*

Lee-Juan Tay*, Kiyotoshi Takeo and Yutaka Hori
Faculty of Agriculture, Tohoku University, Sendai 980

Summary

Suitable culture medium and light condition for each step of *in vitro* seed germination, growth of protocorms and subsequent development of seedlings were determined in *Paphiopedilum* spp. The best seed germination and best growth of protocorms were obtained on Norstog medium in darkness. However, no differentiation of leaf nor root occurred in protocorms cultured on Norstog medium regardless of light condition. Although cultures on Burgeff EG-1 medium resulted in poor seed germination, germlings developed readily into seedlings with leaves and roots if cultured in light. Duration of the dark culture on Norstog medium to yield the maximal percentage of seed germination was found six weeks and longer. Healthier protocorms were produced in the culture with longer dark period. Protocorms grown to various developmental stages on Norstog medium in darkness were transplanted onto different media in different light conditions. The best development to seedlings was obtained from the protocorms with diameter 0.5 to 1.0 mm transplanted onto Burgeff EG-1 medium and cultured in light.

Introduction

Technique for seed propagation in orchids has been well improved, and now seeds of most orchid species can be easily germinated on several types of synthetic culture media (1, 2, 10). However, there are still some species of which seed propagation technique is not yet established. *Paphiopedilum* is among such orchids. The present work aimed to find out the most suitable culture medium and light condition for each step of seed germination, growth and development of protocorms and seedlings in *in vitro* seed propagation of *Paphiopedilum*.

Materials and Methods

1. **Plant materials.**
 Paphiopedilum sukhakulii and its hybrids with other *Paphiopedilum* species listed in Table 1 were used as experimental materials.

Capsules were harvested six months after artificial self- or cross-pollination. The capsules were surface sterilized by soaking them in 75% aqueous ethanol for 30 seconds followed by 15-min immersion in 0.5% sodium hypochloride solution containing Tween 20, and rinsed with sterilized water. The sterilized capsules were split to open and seeds were dispensed onto culture medium.

The cultures were classified into the following six groups according to their developmental stages; dormant seed (Stage 0), with swollen embryo (Stage 1), with embryo burst out of seed coat (Stage 2), with diameter less than 0.5 mm (Stage 3), with diameter between 0.5 and 1.0 mm (Stage 4) and with diameter over 1.0 mm or with leaves and/or roots (Stage 5). In this study, swelling of embryo was regarded as germination of seed, the plants at developmental stages after germination and before initiation of leaf and/or root were called protocorms, and those after the initiation of leaf and/or root were seedlings.

2. **Culture conditions**
 Norstog(6) and modified Burgeff EG-1(3) media were used. The media were supple-
mented with 2% sucrose, adjusted to pH 5.0 and solidified with 1% agar. Burgeff EG-1 medium was autoclaved at 120°C for 15 min, while Norstog medium was sterilized by passing nutrient solution through a milipore filter (pore size 0.22 μm) to prevent a possible degradation by autoclaving of organic elements in it. Ten ml of medium was poured into a culture tube (20 mm in diameter and 150 mm in height). All cultures were incubated at 25°C in darkness or continuous white light of ca. 3,500 lx at plant level provided by fluorescent tubes.

Results

1. Suitable medium and light condition for seed germination.

Seed germinations scored six months after the inoculation in P. sukhakulii and its hybrids with other Paphiopedilum species on Norstog and Burgeff EG-1 media in darkness and light are shown in Table 1. Seeds produced by self-pollination germinated poorly or did not germinate at all, while germination percentages in hybrid seeds were generally high. The different seed sources showed similar trend in responses to the media and light condition although germination percentages differed among them. Namely, the highest germination percentage was obtained on Norstog medium in darkness. When incubated in light, however, germination percentage on Norstog medium was markedly reduced. On the other hand, no significant difference between dark and light cultures was observed on Burgeff EG-1 medium.

Protocorms at different developmental stages were observed at the end of six-months culture because the seeds had germinated sporadically. Therefore, development of the protocorms was also scored. Frequency distribution of protocorms at respective developmental stages in P. ‘Clair de Lune’ × P. sukhakulii is shown in Fig 1. Trend was the same in other hybrids. On Norstog medium, almost 90% of the protocorms cultured in light remained at the Stage 1, while many protocorms cultured in darkness developed to the Stage 5 although most of them did not differentiate leaf nor root. On the other hand, protocorms cultured on Burgeff EG-1 medium differentiated leaves and roots when cultured in light.

2. Length of dark period required for seed germination.

Since the previous experiment showed that the best seed germination was obtained in dark culture on Norstog medium, it was then examined how long period of dark culture was required to yield the maximal seed germination percentage. Seeds of P. sukhakulii × P. ‘Alma Gevaert’ were incubated on Norstog medium in darkness for 0 to 12 weeks and then transferred to lighted condition, or incubated in darkness throughout the culture period of four months (Fig. 2).

The seeds incubated in continuous light (0 week dark) germinated poorly and the germination percentage increased with increasing length of dark period up to six

Table 1. Seed germination in *Paphiopedilum sukhakulii* and its hybrids with other *Paphiopedilum* species on different culture media in darkness and light.

<table>
<thead>
<tr>
<th>Seed source</th>
<th>Germination percentage*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Norstog</td>
</tr>
<tr>
<td></td>
<td>Dark</td>
</tr>
<tr>
<td>P. sukhakulii (self-pollinated)*</td>
<td>46.0±0.5</td>
</tr>
<tr>
<td>P. sukhakulii (self-pollinated)*</td>
<td>0±0</td>
</tr>
<tr>
<td>P. sukhakulii × P. neivum</td>
<td>60.3±3.1</td>
</tr>
<tr>
<td>P. sukhakulii × P. acmodontum</td>
<td>97.2±1.8</td>
</tr>
<tr>
<td>P. sukhakulii × P. bellaturn</td>
<td>46.9±0.4</td>
</tr>
<tr>
<td>P. ‘Clair de Lune’ × P. sukhakulii</td>
<td>96.2±1.0</td>
</tr>
<tr>
<td>P. ‘Clair de Lune’ × P. sukhakulii</td>
<td>82.7±1.8</td>
</tr>
</tbody>
</table>

* Scored six months after the inoculation.
* Seeds originated in different capsules.
Fig. 1. Development of protocorms cultured on different culture media in darkness and light in Paphiopedilum 'Clair de Lune' × P. sukhabulii. Frequency of the protocorms at each developmental stage (see Materials and Methods) was scored six months after the seed inoculation.

Fig. 2. Seed germination in Paphiopedilum sukhabulii × P. 'Alma Gevaert' incubated on Norstog medium in darkness for different length of period and then transferred to lighted condition. Percent germination was scored four months after the seed inoculation, and shown as a mean with a S.E.

weeks. No significant difference was observed among the cultures incubated in darkness for six weeks and longer. Development of the resulted protocorms is shown in Fig. 3. Most of the protocorms in continuous light turned brown and died off at the early stage of development. The longer the period of dark culture was extended, the healthier protocorms were produced. However, no differentiation of leaf and root was observed in all cultures by the end of four-months culture.

3. Suitable medium and light condition for development of seedlings.

Protocorms of P. 'Clair de Lune' × P. sukhabulii were obtained from seeds cultured on Norstog medium in darkness. The protocorms at different stages of development (see Materials and Methods) were selected and transplanted onto different media and light conditions to determine the most favourable medium and light condition for development of protocorm to seedling and subsequent growth of the seedling, and the most suitable developmental stage of protocorm to be transferred to such conditions. Survival rate in the protocorms transplanted (Table 2) and growth and differentiation in the survived protocorms (Figs. 4 to 6) were scored four months after the transplantation. Protocorms transplanted when they were at the Stage 3 and later showed the highest survival rate, and the best growth was obtained in those transplanted when at the Stage 4. Protocorms grown on Burgeff EG-1 medium, when cultured in light, yielded the greatest growth and the best development of leaves and roots. When cultured in darkness, however, seedlings etiolated and the growth was inferior. On Norstog medium, protocorms showed an abnormal development.
with remarkable increase in size and the morphogenesis was delayed. Mortality of protocorm was high and those survived did not grow well especially in light.

Discussion

Burgeff EG-1 medium has been recommended for seed germination of *Paphiopedilum* (7) and Norstog medium was recently proved to be useful for it (9). The present work indicated that Norstog medium was more suitable than Burgeff EG-1 medium for seed germination in *Paphiopedilum*. This medium, however, was apparently not suited for further development of protocorms. Instead, Burgeff EG-1 medium was more favourable to differentiation of leaf and root and further growth of seedlings. Thus, seeds should be incubated on Norstog medium in darkness for six weeks or longer to allow the resulted protocorms to grow to the Stage 4, and then the protocorms should be transplanted onto Burgeff EG-1 medium in light to yield the best result in seed propagation of *Paphiopedilum*. The present study revealed that requirements for seed germination and growth of protocorm were different from those for differentiation of leaf and root. Therefore, it is apparent that different stages in the development should be studied separately. Most of the previous works on seed propagation in orchids have considered these developmental stages as a whole. This may be one of the reasons why the results
Table 2. Survival rate in protocorms of Paphiopedilum 'Clair de Lune' × P. sukhakulii which were obtained on Norstog medium in darkness and transplanted onto different culture media in darkness and light when they were at different developmental stages (see Materials and Methods).

<table>
<thead>
<tr>
<th>Culture medium</th>
<th>Light condition</th>
<th>Developmental stage when transplanted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Burgeff EG-1</td>
<td>Dark</td>
<td>26.7±14.5</td>
</tr>
<tr>
<td></td>
<td>Light</td>
<td>63.3±6.8</td>
</tr>
<tr>
<td>Norstog</td>
<td>Dark</td>
<td>53.3±3.3</td>
</tr>
<tr>
<td></td>
<td>Light</td>
<td>6.7±6.6</td>
</tr>
</tbody>
</table>

* Scored four months after the transplantation.

![Fig. 5.](image)

Fig. 5. Differentiation of leaves in protocorms of Paphiopedilum 'Clair de Lune' × P. sukhakulii which were obtained on Norstog medium in darkness and transplanted onto different culture media in darkness and light when they were at different developmental stages (see Materials and Methods). Number of leaves per seedling (open column) and length of the longest leaf (closed column) were scored four months after the transplantation. ND, NL, BD and BL mean cultures on Norstog medium in darkness and light and on Burgeff EG-1 medium in darkness and light, respectively.

![Fig. 6.](image)

Fig. 6. Differentiation of roots in protocorms of Paphiopedilum 'Clair de Lune' × P. sukhakulii which were obtained on Norstog medium in darkness and transplanted onto different culture media in darkness and light when they were at different developmental stages (see Materials and Methods). Number of roots per seedling (open column) and length of the longest root (closed column) were scored four months after the transplantation. ND, NL, BD and BL mean cultures on Norstog medium in darkness and light and on Burgeff EG-1 medium in darkness and light, respectively.
obtained were not always consistent. Major
difference in composition between Burgeff
EG-1 and Norstog media is of nitrogen
source, that is, ammonium salt is used in
Burgeff EG-1 medium while amino acids are
used in Norstog medium. Amino acids sup-
ported seed germination and protocorm
growth but were inhibitory against shoot
formation in Dactylorhiza purpurella and
Cypripedium reginae(4,5). It was reported
in some orchids that most amino acids either
inhibited growth or had no effect on it(1,8).
These facts and the present results indicate
that amino acids play different roles before
and after the Stage 4, or they play some
important roles in transition from the Sta-
ges 4 to 5, namely, differentiation of root
and/or leaf. The difference in media used
influenced also the effects of light, that is,
the photoinhibition of seed germination and
eyearly growth of protocorms was more evident
on Norstog medium than on Burgeff EG-1
medium. This photoinhibition on Norstog
medium might be through influence on the
utilization of amino acids because the utiliza-
tion of some amino acids was affected by
light(1,8).

Acknowledgement

The authors are grateful to Mr. Setsuro
Kayaba and Mr. Kenichi Miura, Sendai
Orchid Garden for providing plant materials
and technical help. LJT indebted to Shio-
gama Rotary Club for financial support dur-
ing her stay in Japan.

Literature cited

1. ARDITTI, J. 1967. Factors affecting the
 germination of orchid seeds. Bot. Rev. 33 :
 1—97.
 and perspectives, Cornell Univ. Press.
 Ithaca, New York.
3. BURGEEFF, H. 1936. Samenkeimung der
 Orchideen. G. Fischer.
4. HARVAIS, G. 1971. The development and
growth requirements of Dactylorhiza purpu-
 50 : 1223—1229.
5. HARVAIS, G. 1981. An improved culture
 medium for growing the orchid Cypripedium
 2555.
 for the culture of premature barley embryos.
 In Vitro. 8 : 307—308.
 In : W. Richter (ed) Orchid Care. Ronald
8. SPOERL, E. 1948. Amino acid as source of
 nitrogen for orchid embryos. Amer. J. Bot.
 35 : 88—95.
 vitro germination of Paphiopedilum seed on
 a completely defined medium. Scientia
 Hort. 14 : 165—170.
10. THOMPSON, P. A. 1974. Orchids from seed :
 A new basal medium. Orchid Rev. June :
 179—183.
パフィオベディルム属における種子発芽と幼苗分化のための最適 in vitro 培養条件

テイリー ジュアン・竹能清俊・周 裕
東北大学農学部 980 仙台市塩通区宮町

摘 要

パフィオベディルム属の数つかの種及びそれらの間の交配種を材料として、種子発芽、プロトコムの生長及び幼苗への分化のそれぞれの過程における最適な培地及び光条件を検討した。種子発芽及びプロトコムの生長は Norstog 培地、暗条件下で最も優れていたが、この条件下ではすべてがプロトコムの段階にとどまり、幼苗への分化は起こらなかった。Burgeff EG-1 培地上では種子発芽率は低かったが、発芽したものは明下に培養されれば多くが幼苗に分化した。Norstog 培地上での暗培養期間が6週間以下の場合は、暗培養期間が短くなるほど発芽率は低く、発芽後のプロトコムの生長も劣った。暗培養期間が6週間より長い場合は、発芽率に著しい差はなかったが、プロトコムの生長及び暗培養期間が長くなるほど良好であった。しかし、Norstog 培地上での培養が続く限り幼苗への分化は起こらなかった。次に、Norstog 培地、暗条件下で培養して得た、発生段階の異なるプロトコムを材料とし、プロトコムの幼苗への分化に最適な培養条件を検討した。プロトコムを横径が 0.5～1.0 mm の段階まで生長させてから Burgeff EG-1 培地に移植し、明条件下で培養したとき、最も高い率で幼苗が得られた。